Distributed multi-objective African vulture accelerated optimization intelligent algorithm for multi-objective economic dispatch of power systems
Linfei Yin and
Yongzi Ye
Applied Energy, 2025, vol. 398, issue C, No S0306261925011079
Abstract:
The context of expanding power system scale and rapid development of the power market brings many challenges to economic dispatch. Although distributed multi-objective optimization methods are more convenient in solving large-scale systems, distributed multi-objective optimization methods still have shortcomings such as inefficient economic dispatch of the system and long computation time. This study combines the acceleration of deep neural networks with distributed multi-objective optimization, constructs a novel FlattenSelf-attentionNet structure, and proposes a distributed multi-objective African vulture accelerated optimization algorithm (DMOAVAOA) to enhance computational efficiency and reduce the dispatch time of the whole system. Experimental results in the American midwestern 118-bus and the 1790-bus system indicate that: Qu et al. (2018) (1) in the American midwestern 118-bus system, compared with distributed optimization, distributed accelerated optimization reduced carbon emissions by 9.95 %, cost by 2.16 %, and total operating time by 12.38 %; Qu et al. (2019) (2) in a 1790-bus system, the distributed accelerated optimization reduced carbon emissions by 3.5 %, cost spend by 4.8 %, and total system operating time by 43.25 % compared to distributed optimization; Chen et al. (2019) (3) the DMOAVAOA proposed in this study outperforms the distributed optimization method in the evaluation of performance metrics.
Keywords: Distributed optimization algorithm; Multi-objective optimization algorithm; Deep neural networks; Optimization acceleration; FlattenSelf-attentionNet (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925011079
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011079
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126377
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().