Non-contact intelligent diagnosis method for key components in energy equipment based on acoustic signal and deep learning
Junming Yao,
Wei Liang,
Lixiang Duan,
Yilei Ouyang,
Zheng Wang and
Biao Wei
Applied Energy, 2025, vol. 398, issue C, No S0306261925011109
Abstract:
With the development of clean energy, the deployment of energy equipment such as natural gas compressors and wind turbines has been steadily increasing. Non-contact monitoring and fault diagnosis of key components in energy systems are critical for preventing operational failures and ensuring safety. Acoustic signals, as a prominent non-contact sensing modality, are highly sensitive to fault features. This paper conducted corresponding research and proposed a novel MF-IDCL (2D Feature Mapping - Improved Deep Convolution Lightweight Framework) method based on noisy acoustic signals. Non-contact acoustic monitoring experiments were designed and conducted on energy equipment gearboxes, and the collecting data were used to perform a comparative validation between the proposed framework and conventional methods. Furthermore, cross-domain validation was conducted to analyze the method's generalization capability. The results demonstrate that the proposed 2D feature mapping mechanism exhibits advantages in accuracy, computational efficiency, and adaptability over traditional feature extraction methods. The MF-IDCL framework achieves superior performance, with an accuracy of 87.9 % at SNR5 and 85.2 % at SNR0, while maintaining lower training costs and memory consumption. In cross-domain validation, the framework also showed promising applicability to non-acoustic data such as vibration signals. It is of positive significance in ensuring safety and stability of energy equipment.
Keywords: Energy equipment; Acoustic signal; Planetary gearbox; Feature mapping; Deep learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925011109
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011109
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126380
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().