EconPapers    
Economics at your fingertips  
 

Deep Q-network based battery energy storage system control strategy with charging/discharging times considered

Jun Cai, Maowen Fu, Ying Yan, Zhong Chen and Xin Zhang

Applied Energy, 2025, vol. 398, issue C, No S0306261925011146

Abstract: The Battery Energy Storage System (BESS) plays a pivotal role in maintaining the balance of electricity supply and demand on the user side. This paper proposes an energy management system (EMS) for the BESS based on the Deep Q-Network (DQN) algorithm that takes into account the battery charging and discharging times. Initially, a mathematical model of the EMS is established. Subsequently, the optimal decision-making process of EMS is formulated as Markov Decision Process (MDP), and based on this, the MDP formula and DQN algorithm are designed to design charging/discharging schedules based on load conditions. Finally, an experimental study was conducted based on the actual load data of a certain line in Zunyi, Guizhou, China. The test results show that the optimization method proposed in this study reduces the maximum variance of power grid fluctuations to 49 % of the original variance, while reducing the number of battery charging and discharging cycles to the range of 1/3 to 1/2 of the initial value. This delays the battery aging process, improving the economic and practical efficiency of energy management strategies.

Keywords: Battery energy storage system (BESS); Energy management system (EMS); Deep Q-network (DQN); Battery charging and discharging times (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925011146
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011146

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.126384

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-08-31
Handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011146