EconPapers    
Economics at your fingertips  
 

Spatial planning for China’s renewable energy expansion toward 2030

Ziheng Zhu, Shiping Ma, Hanjie Mao, Junting Zhong, Lifeng Guo, Deying Wang, Junling Huang, Changhong Miao, Xiaoye Zhang, Xiliang Zhang and Da Zhang

Applied Energy, 2025, vol. 398, issue C, No S0306261925011432

Abstract: China is rapidly advancing renewable energy deployment to decarbonize the power system and meet its ambitious climate targets. However, existing energy models have limitations in simulating resource availability, generation variability, and grid integration in a consistent framework with high temporal and spatial resolution, making it difficult for them to effectively guide policy formulation. In this paper, we develop a model that can co-optimize capacity expansion and operation for China’s power system at the hourly level in a full year and a grid cell level of 0.1∘×0.1∘ for wind and solar power deployment, which is unprecedented in terms of temporal and spatial resolution. Applying this modeling tool to inform renewable deployment during the 15th Five-Year Plan (2026-2030), we find that China will have cumulatively 766 GW of wind power and 1880 GW of solar power installations to generate 4.9 PWh/yr by 2030 in the base case, close to the coal power output (5.3 PWh/yr). We further find that onshore wind installations are concentrated in the “Three North” regions, offshore wind installations are concentrated along the coasts of Fujian, Zhejiang, and Guangdong, and large-scale solar installations are scattered in northern, eastern, and southern China. An additional 350 GW of inter-provincial ultra-high voltage transmission and 1200 GWh of energy storage will be installed during the 15th Five-Year Plan to balance the increased renewable installations. The simulated marginal cost of electricity production reveals an increased variability, presenting challenges for power market regulations. It is recommended to prioritize spatial planning for renewable energy installations and related industries, and emphasize the critical role of cost-effective storage technologies and ultra-high voltage inter-provincial transmissions.

Keywords: Renewable energy; Power system modeling; 15th Five-Year Plan; China (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925011432
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011432

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.126413

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-08-31
Handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011432