EconPapers    
Economics at your fingertips  
 

Combustion structuring of 3D nano- and microspheres: Advances and prospects for catalysis and energy storage

Hayk H. Nersisyan and Jong Hyeon Lee

Applied Energy, 2025, vol. 398, issue C, No S0306261925011900

Abstract: This review explores the combustion-driven structuring of three-dimensional nano- and microspheres (N&MSs) composed of various inorganic materials, including metals, alloys, non-metals, and binary and complex metal oxides. The introduction provides an overview of key synthesis techniques for N&MSs, with a focus on three combustion-based methods: self-propagating high-temperature synthesis (SHS), solution combustion synthesis (SCS), and flame synthesis (FS). Section 2 examines the fundamental mechanisms governing microsphere formation and the thermodynamic and kinetic models influencing this process. Section 3 details combustion-based approaches for fabricating dense and hollow N&MSs via SHS, SCS, and FS, critically analyzing how reaction time, flame temperature, reaction medium, and the choice of reactants and solvents impact particle morphology and size. Section 4 highlights the applications of N&MSs in energy storage, catalysis, sensing, and drug delivery. Finally, Section 5 discusses the advantages and limitations of combustion synthesis for nano- and microsphere production, offering perspectives on future research directions in this rapidly evolving field.

Keywords: Combustion synthesis; Spherodization; Nanospheres; Temperature; Wave velocity; Metals (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925011900
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011900

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.126460

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-08-31
Handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011900