Combustion structuring of 3D nano- and microspheres: Advances and prospects for catalysis and energy storage
Hayk H. Nersisyan and
Jong Hyeon Lee
Applied Energy, 2025, vol. 398, issue C, No S0306261925011900
Abstract:
This review explores the combustion-driven structuring of three-dimensional nano- and microspheres (N&MSs) composed of various inorganic materials, including metals, alloys, non-metals, and binary and complex metal oxides. The introduction provides an overview of key synthesis techniques for N&MSs, with a focus on three combustion-based methods: self-propagating high-temperature synthesis (SHS), solution combustion synthesis (SCS), and flame synthesis (FS). Section 2 examines the fundamental mechanisms governing microsphere formation and the thermodynamic and kinetic models influencing this process. Section 3 details combustion-based approaches for fabricating dense and hollow N&MSs via SHS, SCS, and FS, critically analyzing how reaction time, flame temperature, reaction medium, and the choice of reactants and solvents impact particle morphology and size. Section 4 highlights the applications of N&MSs in energy storage, catalysis, sensing, and drug delivery. Finally, Section 5 discusses the advantages and limitations of combustion synthesis for nano- and microsphere production, offering perspectives on future research directions in this rapidly evolving field.
Keywords: Combustion synthesis; Spherodization; Nanospheres; Temperature; Wave velocity; Metals (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925011900
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011900
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126460
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().