EconPapers    
Economics at your fingertips  
 

Insights into energy efficiency for vanadium redox flow battery (VRFB) using the artificial intelligence technique

Rasoul Talebian, Ali Pourian, Pouya Zakerabbasi, Sina Maghsoudy and Sajjad Habibzadeh

Applied Energy, 2025, vol. 399, issue C, No S0306261925012152

Abstract: Vanadium redox flow battery (VRFB) offers a sustainable and reliable solution for large-scale energy storage applications. This study represents the first investigation into the comprehensive data-driven analysis of inter-parameter correlation and prediction of the energy efficiency of VRFBs utilizing the Gaussian Process Regression (GPR) model. Namely, 420 VRFB datasets were collected from the literature, whereas 10 structural and 2 operational features are considered input parameters. Indeed, in the VRFB cells with the greater active area, i.e., pilot-to-commercial-scale applications, the Serpentine flow field configuration, higher electrolyte concentration, thicker electrodes, and higher felt compression are more prevalent. The outcomes reveal that the current density, membrane type, and electrode treatment with the respective Pearson correlation coefficient values of −0.4167, 0.2862, and 0.1546 significantly affect the VRFBs' energy efficiency. Besides, the developed ML models can accurately result in the associated energy efficiency in the VRFBs, with the highest accuracy of the GPR- Matern5/2. The training and testing R2 values are 0.9933 and 0.9565, respectively, indicating near-perfect accuracy, making it a reliable model. This research paves the way for improving VRFB performance, advancing its practical application, and providing key insights into AI-driven battery design.

Keywords: Energy storage; Vanadium redox flow battery (VRFB); Energy efficiency; Machine learning; Gaussian process regression (GPR) (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925012152
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:399:y:2025:i:c:s0306261925012152

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.126485

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-09-30
Handle: RePEc:eee:appene:v:399:y:2025:i:c:s0306261925012152