An accurate quantification study on the rooftop PV potential based UAV field photography in dense urban environments
Hongzhi Mao,
Weili Liu,
Chongzheng Li,
Zhiyong Tian,
Angelo Zarrella,
Ling Ma,
Xinyu Chen,
Yongqiang Luo and
Jianhua Fan
Applied Energy, 2025, vol. 399, issue C, No S0306261925012292
Abstract:
An accurate and detailed estimation of rooftop photovoltaic (PV) installation potential is important for guiding rooftop PV deployment strategies, thereby accelerating progress toward carbon neutrality. The rooftop PV installation coefficient is a key parameter for estimating the rooftop installable PV areas. Existing methods typically estimate the rooftop PV installation coefficient by designing hypothetical layouts on rooftops without installed PV systems. However, such approaches may lead to discrepancies from the actual installation coefficients observed after installation. This study proposes a method for determining rooftop PV installation coefficients based on real-world data collected from a large number of buildings with existing PV installations. Unmanned aerial vehicle (UAV) photography is employed to rapidly and comprehensively capture rooftop PV installation information, including the ratio of PV to rooftop area, building type, roof type, and installation method. PV installation data from 279 buildings across three cities in China have been collected and analyzed. Rooftop PV installation coefficients were derived for six building types, which can be applied to estimate the city-wide rooftop PV installation potential. Taking Wuhan central urban area as a case study, the PV installation potential of different functional zones and the average installation potential of individual buildings have been calculated. The results indicate that the rooftop PV installation coefficients for various building types in Wuhan range from 0.26 to 0.50, with an overall citywide average of 0.32. These values are significantly lower than those reported in most previous studies that did not incorporate actual installation data. The rooftop PV installation area potential in Wuhan central urban is estimated at 38 km2, with a maximum power generation potential of approximately 9308 GWh/year. Based on Wuhan's total electricity consumption in 2024, this could meet 18.9 % of the city's total electricity demand
Keywords: Rooftop PV; Installation potential; Installation coefficient; UAV photography (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925012292
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:399:y:2025:i:c:s0306261925012292
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126499
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().