Desalination by solar-powered reverse osmosis in a remote area of the Sultanate of Oman
Zaher Al Suleimani and
V. Rajendran Nair
Applied Energy, 2000, vol. 65, issue 1-4, 367-380
Abstract:
The Ministry of Water Resources successfully conducted an experimental study on the use of solar power to desalinate brackish ground water at their Heelat ar Rakah camp, a remote location some 900 km south of Muscat, the capital of Oman. The system comprises components for pre-treatment of pumped well water to separate hydrogen sulphide, acid dosing to correct the pH, cartridge filtration, a solar powered reverse osmosis unit, and a reject-water evaporation pond. The solar powered system comprises a 23.2 m2 solar photovoltaic generator with a peak capacity of 3250 Wp, a boost charge battery of 200 Ah at 48 VDC, a charge controller, a sine-wave inverter of 3000 VA with an output of 230 V, 50 Hz, and necessary controls and instrumentation. The design water output of 5 m3/day during 5 h (of each day) was achieved, with the output sometimes exceeding 7.5 m3/day. The average cost of production is estimated at US$6.52/m3 over the 20-year lifetime of the equipment. The study has demonstrated that solar-powered reverse osmosis systems are particularly appropriate to remote locations that have limited or no access to supply services such as fuel, power or potable water.
Keywords: Solar; power; Photovoltaic; Desalination; Reverse; osmosis; Brackish; water; Oman; Nejd (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(99)00100-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:65:y:2000:i:1-4:p:367-380
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().