EconPapers    
Economics at your fingertips  
 

Feasibility of lowering the condenser's inlet water temperature of a chiller using thermal water storage

J. Asrael, P. E. Phelan and B. D. Wood

Applied Energy, 2000, vol. 66, issue 4, 339-356

Abstract: A novel approach is proposed for applying cool thermal storage to reduce the on-peak demand of a water-cooled chiller. By charging the store at night via a cooling tower, and using this water to supply the condenser of a chiller during on-peak hours, cooler than normal water is supplied to the chiller. A feasibility study of this system was conducted using TRNSYSÂ -- a transient simulation modeling program examining varying capacities of cooling tower and thermal store volumes. These systems were tested using geographic weather data that demonstrated conducive diurnal changes in wet-bulb temperature (Twet). Results suggest that the use of cool water thermal storage in this way can reduce both on-peak energy demand and on-peak power use by as much as 35%. System optimization is dependent on the thermal storage efficiency, the capacity of the cooling tower, and the diurnal change in Twet.

Keywords: Cool; thermal; storage; Wet-bulb; temperature; Chiller; Condenser (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(00)00017-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:66:y:2000:i:4:p:339-356

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:66:y:2000:i:4:p:339-356