Coal gasification system using nuclear heat for ammonia production
Yoshitomo Inaba,
Motoo Fumizawa,
Makoto Tonogouchi and
Yutaka Takenaka
Applied Energy, 2000, vol. 67, issue 4, 395-406
Abstract:
Utilization of nuclear energy is an effective way of solving the global warming resulting from CO2 emissions. Thermal energy accounts for more than two thirds of total energy utilization at present and therefore it is significant to extend the utilization of nuclear heat for the effective reduction of CO2 emissions in the world. This paper describes a coal gasification system using HTGR nuclear heat in an ammonia production plant in terms of industrial utilization of the nuclear heat. The system uses the nuclear heat directly in addition to generating electricity. A steam reforming method using a two-stage coal gasifier is employed: it improves the heat utilization efficiency of the secondary helium gas from the HTGR. Finally, the paper clarifies that the nuclear gasification system can reduce CO2 emissions by about five hundred thousand tons per year from that of a conventional system using fossil fuel.
Keywords: CO2; emission; Nuclear; heat; Industrial; utilization; HTGR; Ammonia; production; plant; Steam; reforming; Coal; gasification; Two-stage; coal; gasifier; Secondary; helium; gas; Heat; utilization; efficiency (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(00)00037-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:67:y:2000:i:4:p:395-406
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().