EconPapers    
Economics at your fingertips  
 

Multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine

S. O. T. Ogaji, R. Singh and S. D. Probert

Applied Energy, 2002, vol. 71, issue 4, 339 pages

Abstract: Sensor failures are a major cause of concern in engine-performance monitoring as they can result in false alarms and, in some cases, lead to the condemnation of a non-offending component or section of the engine. This condition has the potential to increase engine downtime and thus incur higher operational costs. The fact that more than a single sensor could be faulty simultaneously should also not be overlooked. In this paper, we present a set of neural networks, modularly designed to diagnose and quantify single and dual-sensor faults in a two-shaft stationary gas-turbine. A further outcome of the analysis is the restructuring of the faulty data to a fault-free form through the filtering out of noise and bias. This restructured data can be used to perform sensor-based calculations accurately. The engine chosen for this analysis is thermodynamically similar in performance to the Rolls Royce (RR) Avon. The data used to train the networks were derived from a non-linear aero-thermodynamic model of the engine's behaviour. The results obtained show the good prospects for the use of this technique.

Keywords: Gas-turbine; Sensor; fault; Neural; networks; Diagnostics (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00015-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:71:y:2002:i:4:p:321-339

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:71:y:2002:i:4:p:321-339