Multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine
S. O. T. Ogaji,
R. Singh and
S. D. Probert
Applied Energy, 2002, vol. 71, issue 4, 339 pages
Abstract:
Sensor failures are a major cause of concern in engine-performance monitoring as they can result in false alarms and, in some cases, lead to the condemnation of a non-offending component or section of the engine. This condition has the potential to increase engine downtime and thus incur higher operational costs. The fact that more than a single sensor could be faulty simultaneously should also not be overlooked. In this paper, we present a set of neural networks, modularly designed to diagnose and quantify single and dual-sensor faults in a two-shaft stationary gas-turbine. A further outcome of the analysis is the restructuring of the faulty data to a fault-free form through the filtering out of noise and bias. This restructured data can be used to perform sensor-based calculations accurately. The engine chosen for this analysis is thermodynamically similar in performance to the Rolls Royce (RR) Avon. The data used to train the networks were derived from a non-linear aero-thermodynamic model of the engine's behaviour. The results obtained show the good prospects for the use of this technique.
Keywords: Gas-turbine; Sensor; fault; Neural; networks; Diagnostics (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00015-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:71:y:2002:i:4:p:321-339
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().