Novel approach for improving power-plant availability using advanced engine diagnostics
Stephen Ogaji,
Suresh Sampath,
Riti Singh and
Douglas Probert
Applied Energy, 2002, vol. 72, issue 1, 389-407
Abstract:
Technological advances and high cost of ownership have resulted in considerable interest in advanced maintenance techniques. Quantifying fault and consequently availability requires the use of gas-turbine and combined-cycle models able to undertake appropriate diagnostics and life-cycle costing. These are complex processes as they include the simulation of such issues as performance and assessment of degraded gas-turbines, life usage and risk analysis. This report describes how the recent developments in engine diagnostics using advanced techniques like Artificial Neural Network (ANN) and Genetic Algorithm (GA) based techniques have provided new opportunities in the field of engine-fault diagnostics. It also discusses the potential of advanced engine-diagnostics, employing such features as ANN and GA for contributing to the management of availability of industrial gas-turbines.
Keywords: Diagnostics; Simulation; Availability; Artificial; intelligence (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00018-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:72:y:2002:i:1:p:389-407
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().