Applying condensing-temperature control in air-cooled reciprocating water chillers for energy efficiency
K. T. Chan and
F. W. Yu
Applied Energy, 2002, vol. 72, issue 3-4, 565-581
Abstract:
This paper reports on the modelling and findings of the energy performance of an air-cooled reciprocating multiple-chiller plant under the conventional head pressure control and the new condensing-temperature control in a subtropical climate. The simulation model was validated using the operating data of an existing chiller plant. As noted from this existing air-cooled reciprocating chiller plant, there was a substantial efficiency drop at part-load resulting from the head pressure control. If operating at variable lower condensing-temperatures based on the established operating mode of the condenser fans and compressors, it is shown that the chiller consumption can be maintained below 2 kW/refrigeration ton throughout the entire range of outdoor temperature and part-load conditions, giving an average efficiency of 1.08 kW/refrigeration ton. The energy imposition due to cycling on more condenser fans can be compensated by the reduced compressor consumption. Potential energy savings of 18.2 and 29% in the annual chiller consumption are achievable by applying the condensing-temperature control to two existing chiller plants studied. This supports the need to develop the condensing-temperature control as an improvement to the conventional head pressure control.
Keywords: Air-cooled; chillers; Condensing; temperature; control; Head; pressure; control; Energy; efficiency (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00053-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:72:y:2002:i:3-4:p:565-581
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().