Transmutations of nuclear waste in accelerator-driven subcritical systems
Stefan Taczanowski
Applied Energy, 2003, vol. 75, issue 1-2, 97-117
Abstract:
The physical preconditionings of transmutations are analysed. It has been suggested that one of the most viable incineration concepts is a symbiotic nuclear-energy system, consisting of a transmuter and a number of co-operating light-water reactors (LWRs). Closing of the fuel cycle is not easily achievable, since the minor actinides (MAs), unavoidably then produced in significant quantities, show disadvantageous safety properties (positive void reactivity coefficients). Accelerator-driven subcritical systems (ADSSs), distinct by their remoteness from super prompt criticality, have been attracting more and more attention. The superiority of subcritical ones is shown by comparing their behaviours in the case of a rapid reactivity insertion that brings no risk, in contrast to the fast critical ones. Finally, research problems and difficulties are mentioned. Any form of closed fuel cycle cannot avoid dealing with large quantities of radioactive materials. Yet, a definitive elimination of actinides, with the use of the enormous released energy, is worth this price. Summarising, the concept of nuclear transmutations in accelerator-driven subcritical systems significantly heightens the safety of nuclear-power systems.
Keywords: Nuclear; transmutations; Actinides; Radwaste; Accelerator-driven; subcritical; systems (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00023-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:75:y:2003:i:1-2:p:97-117
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().