Integrated PV and gas-turbine system for satisfying peak-demands
J. O. Jaber,
S. D. Odeh and
S. D. Probert
Applied Energy, 2003, vol. 76, issue 4, 305-319
Abstract:
A computer-simulation model of the behaviour of a photovoltaic (PV) gas-turbine hybrid system, with a compressed-air store, is developed in order to evaluate its performance as well as predict the total energy-conversion efficiency and the incurred costs under various operating conditions. This integrated PV and gas-turbine hybrid plant produces approximately 140% more power per unit of fuel consumed compared with corresponding conventional gas-turbine plants. In addition, lower rates of pollutant emissions to the atmosphere per kWh of electricity generated are achieved.
Keywords: Photovoltaic Gas-turbine Compressed-air storage Heat rate Generation; Jordan (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00010-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:76:y:2003:i:4:p:305-319
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().