Optimization of solar systems using artificial neural-networks and genetic algorithms
Soteris A. Kalogirou
Applied Energy, 2004, vol. 77, issue 4, 383-405
Abstract:
The objective of this work is to use artificial intelligence methods, like artificial neural-networks and genetic algorithms, to optimize a solar-energy system in order to maximize its economic benefits. The system is modeled using a TRNSYS computer program and the climatic conditions of Cyprus, included in a typical meteorological year (TMY) file. An artificial neural-network is trained using the results of a small number of TRNSYS simulations, to learn the correlation of collector area and storage-tank size on the auxiliary energy required by the system from which the life-cycle savings can be estimated. Subsequently, a genetic algorithm is employed to estimate the optimum size of these two parameters, for maximizing life-cycle savings: thus the design time is reduced substantially. As an example, the optimization of an industrial process heat-system employing flat-plate collectors is presented. The optimum solutions obtained from the present methodology give increased life-cycle savings of 4.9 and 3.1% when subsidized and non-subsidized fuel prices are used respectively, as compared to solutions obtained by the traditional trial-and-error method. The present method greatly reduces the time required by design engineers to find the optimum solution and in many cases reaches a solution that could not be easily obtained from simple modeling programs or by trial-and-error, which in most cases depends on the intuition of the engineer.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (60)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00153-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:77:y:2004:i:4:p:383-405
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().