EconPapers    
Economics at your fingertips  
 

An absorption heat-transformer and its optimal performance

Xiaoyong Qin, Lingen Chen, Fengrui Sun and Chih Wu

Applied Energy, 2004, vol. 78, issue 3, 329-346

Abstract: On the basis of an endoreversible absorption heat-transformer cycle, a generalized irreversible four-heat-reservoir heat-transformer cycle model has been established by taking account of the heat resistances, heat leaks and irreversibilities due to the internal dissipation of the working substance. The heat transfer between the heat reservoir and the working substance is assumed to obey the linear (Newtonian) heat-transfer law, and the overall heat transfer surface area of the four heat-exchangers is assumed to be constant. The fundamental optimal relations between the coefficient of performance (COP) and the heating load, the maximum coefficient of performance and the corresponding heating load, the maximum heating load and the corresponding coefficient of performance, as well as the optimal temperatures of the working substance and the optimal heat-transfer surface areas of the four heat exchangers are derived using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the characteristics of the cycle are studied by numerical examples.

Keywords: Finite-time; thermodynamics; Absorption; heat-transformer; cycle; Heat; resistances; Heat; leak; Internal; irreversibilities (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00180-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:78:y:2004:i:3:p:329-346

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:78:y:2004:i:3:p:329-346