EconPapers    
Economics at your fingertips  
 

Vertical evacuated tubular-collectors utilizing solar radiation from all directions

L. J. Shah and S. Furbo

Applied Energy, 2004, vol. 78, issue 4, 371-395

Abstract: A prototype collector with parallel-connected evacuated double glass tubes is investigated theoretically and experimentally. The collector has a tubular absorber and can utilize solar radiation coming from all directions. The collector performance is measured in an outdoor test facility. Further, a theoretical model for calculating the thermal performance is developed. In the model, flat-plate collector's performance equations are integrated over the whole absorber circumference and the model determines the shading on the tubes as a function of the solar azimuth. Results from calculations with the model are compared with measured results and there is a good degree of similarity between the measured and calculated results. The model is used for theoretical investigations on vertically-placed pipes at a location in Denmark (Copenhagen, lat. 56°N) and at a location in Greenland (Uummannaq, lat. 71°N). For both locations, the results show that to achieve the highest thermal performance, the tube centre distance must be about 0.2 m and the collector azimuth must be about 45-60° towards the west. Further, the thermal performance of the evacuated solar-collector is compared to the thermal performance of the Arcon HT flat-plate solar-collector with an optimum tilt and orientation. The Arcon collector is the best performing collector under Copenhagen conditions, whereas the performance of the evacuated tubular collector is highest under the Uummannaq conditions. The reason is that the tubular collector is not optimally tilted in Copenhagen but also that there is much more solar radiation "from all directions" in Uummannaq and this radiation can be utilized with the tubular collector. It is concluded that the collector design is very promising--especially for high latitudes.

Keywords: Evacuated; tubular; solar; collectors; Collector; modelling; Solar; heating (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations View citations in EconPapers (11) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00204-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:78:y:2004:i:4:p:371-395

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Series data maintained by Dana Niculescu ().

 
Page updated 2017-09-29
Handle: RePEc:eee:appene:v:78:y:2004:i:4:p:371-395