Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine
R. B. Joly,
S. O. T. Ogaji,
R. Singh and
S. D. Probert
Applied Energy, 2004, vol. 78, issue 4, 397-418
Abstract:
The Tristar aircraft, operated by the Royal Air Force, fly many thousands of hours per year in the transport and air-to-air refuelling roles. A large amount of engine data is recorded for each of the Rolls-Royce RB211-524B4 engines: it is used to aid the maintenance process. Data are also generated during test-bed engine ground-runs after repair and overhaul. In order to use recorded engine data more effectively, this paper assesses the feasibility of a pro-active engine diagnostic-tool using artificial neural networks (ANNs). Engine-health monitoring is described and the theory behind an ANN is described. An engine diagnostic structure is proposed using several ANNs. The top level distinguishes between single-component faults (SCFs) and double-component faults (DCFs). The middle-level class includes components, or component pairs, which are faulty. The bottom level estimates the values of the engine-independent parameters, for each engine component, based on a set of engine data using dependent parameters. The DCF results presented in this paper illustrate the potential for ANNs as diagnostic tools. However, there are also a number of features of ANN applications that are user-defined: ANN designs; the number of training epochs used; the training function employed; the method of performance assessment; and the degree of deterioration for each engine-component's performance parameter.
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00202-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:78:y:2004:i:4:p:397-418
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().