Intelligent solar-powered automobile-ventilation system
K. David Huang,
Sheng-Chung Tzeng,
Wei-Ping Ma and
Ming-Fung Wu
Applied Energy, 2005, vol. 80, issue 2, 154 pages
Abstract:
This study adopts airflow management technology to improve the local temperature distributions in an automobile to counteract the greenhouse effect. The automobile's temperature can be reduced to almost the outside temperature before the driver or passenger gets into the vehicle. When the engine is idling, the greenhouse-control system can be activated to remove the hot air from the car. An appropriate negative pressure is maintained to prevent stuffiness and save energy. The greenhouse-control system requires electrical power when the engine is idle, and a battery cannot supply sufficient power. An auxiliary solar-power supply can save energy and reduce the greenhouse effect of sunlight, while creating a comfortable traveling environment. It ensures that the engine is not overburdened and increases its service life, conserving energy, protecting the environment and improving comfort.
Keywords: Air; flow; management; The; greenhouse; effect; Auxiliary; solar-power; supply (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00050-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:80:y:2005:i:2:p:141-154
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().