Reciprocating Joule-cycle engine for domestic CHP systems
R. W. Moss,
A. P. Roskilly and
S. K. Nanda
Applied Energy, 2005, vol. 80, issue 2, 169-185
Abstract:
The reciprocating Joule-cycle engine operates on a recuperated gas-turbine cycle and is intended to provide high thermal efficiency in small sizes (1-10 kW). It is designed to achieve a higher efficiency than a comparable gas-turbine by using a reciprocating compressor and expander to provide very high compression and expansion efficiencies. Possible power plants for small combined heat-and-power systems currently include Stirling engines, internal-combustion engines, gas-turbines and fuel cells. The reciprocating Joule-cycle engine appears to have considerable advantages compared with other prime movers in terms of efficiency, emissions and multi-fuel capability. The present study estimates the performance of such an engine and is the first stage in a larger project that will in due course produce a demonstration engine.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00048-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:80:y:2005:i:2:p:169-185
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().