EconPapers    
Economics at your fingertips  
 

Performance maps of a diesel engine

Veli Çelik and Erol Arcaklioglu

Applied Energy, 2005, vol. 81, issue 3, 247-259

Abstract: This paper suggests a mechanism for determining the constant specific-fuel consumption curves of a diesel engine using artificial neural-networks (ANNs). In addition, fuel-air equivalence ratio and exhaust temperature values have been predicted with the ANN. To train the ANN, experimental results have been used, performed for three cooling-water temperatures 70, 80, 90, and 100 °C for the engine powers ranging from 1000 to 2300 - for six different powers of 75-450 kW with incremental steps of 75 kW. In the network, the back-propagation learning algorithm with two different variants, single hidden-layer, and logistic sigmoid transfer function have been used. Cooling water-temperature, engine speed and engine power have been used as the input layer, while the exhaust temperature, break specific-fuel consumption (BSFC, g/kWh) and fuel-air equivalence ratio (FAR) have also been used separately as the output layer. It is shown that R2 values are about 0.99 for the training and test data; RMS values are smaller than 0.03; and mean errors are smaller than 5.5% for the test data.

Keywords: Artificial; neural-network; Performance; maps; Fuel-air; equivalence; ratio; Diesel; engine (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00121-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:81:y:2005:i:3:p:247-259

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:81:y:2005:i:3:p:247-259