Performance maps of a diesel engine
Veli Çelik and
Erol Arcaklioglu
Applied Energy, 2005, vol. 81, issue 3, 247-259
Abstract:
This paper suggests a mechanism for determining the constant specific-fuel consumption curves of a diesel engine using artificial neural-networks (ANNs). In addition, fuel-air equivalence ratio and exhaust temperature values have been predicted with the ANN. To train the ANN, experimental results have been used, performed for three cooling-water temperatures 70, 80, 90, and 100 °C for the engine powers ranging from 1000 to 2300 - for six different powers of 75-450 kW with incremental steps of 75 kW. In the network, the back-propagation learning algorithm with two different variants, single hidden-layer, and logistic sigmoid transfer function have been used. Cooling water-temperature, engine speed and engine power have been used as the input layer, while the exhaust temperature, break specific-fuel consumption (BSFC, g/kWh) and fuel-air equivalence ratio (FAR) have also been used separately as the output layer. It is shown that R2 values are about 0.99 for the training and test data; RMS values are smaller than 0.03; and mean errors are smaller than 5.5% for the test data.
Keywords: Artificial; neural-network; Performance; maps; Fuel-air; equivalence; ratio; Diesel; engine (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00121-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:81:y:2005:i:3:p:247-259
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().