Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method
Shengwei Wang and
Jingtan Cui
Applied Energy, 2005, vol. 82, issue 3, 197-213
Abstract:
An online strategy is developed to detect, diagnose and validate sensor faults in centrifugal chillers. Considering thermophysical characteristics of the water-cooled centrifugal chillers, a dozen sensors of great concern in the chiller-system monitoring and controls were assigned into two models based on principal-component analysis. Each of the two models can group a set of correlated variables and capture the systematic trends of the chillers. The Q-statistic and Q-contribution plot were used to detect and diagnose the sensor faults, respectively. In addition, an approach based on the minimization of squared prediction error of reconstructed vector of variables was used to reconstruct the identified faulty-sensors, i.e., estimate their bias magnitudes. The sensor-fault detection, diagnosis and estimation strategy was validated using an existing building chiller plant while various sensor faults were introduced.
Keywords: Centrifugal; chiller; Sensor; fault; Sensor; bias; Fault; detection; Fault; diagnosis; Sensor; estimation; Principal-component; analysis (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00195-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:82:y:2005:i:3:p:197-213
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().