Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation
Hüseyin Kurt,
Mehmet Ozkaymak and
A. Korhan Binark
Applied Energy, 2006, vol. 83, issue 4, 324-342
Abstract:
The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na2CO3) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond.
Keywords: Salt-gradient; solar-pond; Sodium-carbonate; Indoor; experiment; Solar; simulator; Transient; heat-and-mass; transfer; model (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00034-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:83:y:2006:i:4:p:324-342
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().