Efficiency of a Miller engine
A. Al-Sarkhi,
J.O. Jaber and
S.D. Probert
Applied Energy, 2006, vol. 83, issue 4, 343-351
Abstract:
Using finite-time thermodynamics, the relations between thermal efficiency, compression and expansion ratios for an ideal naturally-aspirated (air-standard) Miller cycle have been derived. The effect of the temperature-dependent specific heat of the working fluid on the irreversible cycle performance is significant. The conclusions of this investigation are of importance when considering the designs of actual Miller-engines.
Keywords: Finite-time; thermodynamics; Miller; cycle; Heat; resistance; Friction; Temperature-dependent; specific-heat (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00047-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:83:y:2006:i:4:p:343-351
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().