Theoretical analysis of fluid flow and heat transfer in stoichiometric combustion in a naturally-ventilated control-volume
C.W. Pope and
H. Barrow
Applied Energy, 2006, vol. 83, issue 5, 464-476
Abstract:
Using the conservation equations for mass, momentum and energy, a theoretical analysis of buoyancy driven flow and heat transfer for a ventilated control-volume, with an internal heat-source, has been made. The special case of stoichiometric combustion in a naturally-ventilated brick walled room, with a single rectangular opening, has been used to demonstrate the numerical calculation procedure for the prediction of the histories of the fire temperature, gas flow rate, fuel burn rate, fire power and boundary-wall temperature. The analysis may be extended for more complex space geometries and wall structures; a typical case being a railway carriage with a composite wall.
Keywords: Fluid; flow; Heat; transfer; Ventilated; control; volume (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00057-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:83:y:2006:i:5:p:464-476
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().