Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine
Yasin Ust,
Bahri Sahin,
Ali Kodal and
Ismail Hakki Akcay
Applied Energy, 2006, vol. 83, issue 6, 558-572
Abstract:
In this paper, a performance optimization based on the ecological coefficient of performance (ECOP) criterion has been carried out for an irreversible regenerative Brayton heat-engine. The results obtained were compared with those using the power-output criterion and alternative ecological performance objective-function defined in the literature. The design parameters, under the optimal conditions, have been derived analytically and their effects on the engine's performance have been discussed. It is shown that, for the regenerative Brayton-engine, a design based on the maximum ECOP conditions is more advantageous from the point-of-view of entropy generation rate, thermal efficiency and investment cost.
Keywords: Brayton; heat; engine; Regenerative; Irreversible; Ecological; optimization (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00086-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:83:y:2006:i:6:p:558-572
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().