Exergy-based ecological optimization of linear phenomenological heat-transfer law irreversible Carnot-engines
Lingen Chen,
Xiaoqin Zhu,
Fengrui Sun and
Chih Wu
Applied Energy, 2006, vol. 83, issue 6, 573-582
Abstract:
The optimal exergy-based ecological performance of a generalized irreversible Carnot-engine with losses due to heat-resistance, heat leakage and internal irreversibility, in which the heat-transfer between the working fluid and the heat reservoirs obeys a linear phenomenological heat-transfer law, is derived by taking an exergy-based ecological optimization criterion as the objective. This consists of maximizing a function representing the best compromise between the power output and entropy-production rate of the heat engine. A numerical example is given to show the effects of heat leakage and internal irreversibility on the optimal performance of the generalized irreversible heat-engine. The results provide theoretical guidance for the design of practical engines.
Keywords: Finite-time; thermodynamics; Linear; phenomenological; heat-transfer; law; Irreversible; heat-engine; Exergy-based; ecological; optimization (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00073-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:83:y:2006:i:6:p:573-582
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().