Daylighting and energy implications due to shading effects from nearby buildings
Danny H.W. Li and
S.L. Wong
Applied Energy, 2007, vol. 84, issue 12, 1199-1209
Abstract:
Daylighting has long been recognized as a potential energy-efficient design strategy for buildings. Natural light can help reduce the electrical demand and the associated sensible cooling load due to artificial lighting. In Hong Kong, however, many buildings are constructed close to each other and hence the external environment plays a significant role in daylighting designs. This paper investigates the shading effects due to nearby obstructions when daylighting schemes are being employed. We used the computer simulation tool, EnergyPlus, to illustrate the energy performance of a generic commercial building with daylighting controls obstructed by neighbouring buildings of various heights. Analysis of electricity savings was carried out for the perimeter zones of the whole building and individual floors. Regression techniques were conducted to correlate the building energy savings and the angles of obstructions. It was found that the shading effects due to nearby obstructions strongly affect the building energy budget when daylighting designs are used. Building designers should critically consider the external environment in order to achieve energy-efficient building designs.
Keywords: Daylighting; Shading; effects; Computer; simulations; Obstructing; buildings; Regression; analysis (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(07)00069-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:84:y:2007:i:12:p:1199-1209
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().