Design and multi-objective optimization of heat exchangers for refrigerators
A.K. Gholap and
J.A. Khan
Applied Energy, 2007, vol. 84, issue 12, 1226-1239
Abstract:
In this study, a detailed thermodynamic model for a refrigerator based on an irreversible Carnot cycle is developed with the focus on forced-air heat-exchangers. A multi-objective optimization procedure is implemented to find optimal design values for design variables. Minimizations of energy consumption and material cost were the two objectives considered. Since these objectives are conflicting, no single design will satisfy both simultaneously. The result of this research is a set of multiple optimum solutions, which are called [`]Pareto optimal solutions'. Air and refrigerant side correlations were combined with an elemental approach to model the heat exchangers. This paper presents a detailed design model development. A limited validation is presented with experimental test-data obtained from a typical household refrigerator. Detailed simulation models are typically complex and computationally demanding. An optimization algorithm requires several evaluations of such models. Response surface based metamodels for objective functions were used to save computational effort. A genetic-algorithm based optimization tool is used for multi-criteria optimization.
Keywords: Heat; exchanger; Multi-objective; optimization; Refrigerator (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(07)00045-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:84:y:2007:i:12:p:1226-1239
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().