EconPapers    
Economics at your fingertips  
 

Hydrogen purification using room-temperature ionic liquids

A. Yokozeki and Mark B. Shiflett

Applied Energy, 2007, vol. 84, issue 3, 361 pages

Abstract: Hydrogen purification is a highly important industrial process, and particularly so as a future renewable-energy carrier. In the recent Science magazine, Lin et al. [Plasticization-enhanced hydrogen purification using polymeric membranes. Science, 2006;311:639-42], reported efficient hydrogen purification (CO2/H2 separation) using novel polymeric membranes. The selectivity ranges from about 10 to 30 under typical operating conditions. We report here a much higher selectivity (about 30-300) for CO2/H2 separation using room-temperature ionic liquid solvents. Actual quantitative predictions for such gas-separations have been made for the first time using our equation-of-state model, which was developed in this study and verified experimentally. The present results will provide useful information for far less energy-intensive distillation methods, as well as possible pressure swing adsorption techniques since ionic liquids are essentially non-volatile and can be regarded, from the point of view of sorbents, as "solid" materials.

Keywords: Hydrogen; Purification; Ionic; liquid; Equation; of; state; Phase; equilibria; Thermodynamics; Gas; separation (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(06)00099-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:84:y:2007:i:3:p:351-361

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:84:y:2007:i:3:p:351-361