Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions
S. Diaf,
G. Notton,
M. Belhamel,
M. Haddadi and
A. Louche
Applied Energy, 2008, vol. 85, issue 10, 968-987
Abstract:
The optimal design of the renewable energy system can significantly improve the economical and technical performance of power supply. In this paper, the technical-economic optimization study of a stand-alone hybrid PV/wind system (HPWS) in Corsica Island is presented. Therefore, the primary objective of this study is to estimate the appropriate dimensions of a stand-alone HPWS that guarantee the energy autonomy of a typical remote consumer with the lowest levelised cost of energy (LCE). A secondary aim is to compare the performance and the optimal sizing of two system configurations. Finally, to study the impact of the renewable energy potential quality on the system size, the optimum dimensions of system are defined for five sites in Corsica Island. In this context, a complete sizing model is developed, able to predict the optimum system configuration on the basis of LCE. Accordingly, an integrated energy balance analysis is carried out for the whole time period investigated. The simulation results indicate that the hybrid system is the best option for all the sites considered in this study, yielding lower LCE. Thus, it provides higher system performance than PV or wind systems alone. The choice of the system configuration type affects the state of charge variation profile, especially at low wind potential sites, while the system size and the LCE are significantly influenced. It is shown that the LCE depends largely on the renewable energy potential quality. At high wind potential site, more than 40% of the total production energy is provided by the wind generator, while at low wind potential sites, less than 20% of total production energy is generated by the wind generator.
Keywords: Hybrid; system; Optimum; system; sizing; Energy; balance; Cost; analysis (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (96)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00047-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:85:y:2008:i:10:p:968-987
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().