EconPapers    
Economics at your fingertips  
 

Effect of slip on entropy generation in a single rotating disk in MHD flow

Aytac Arikoglu, Ibrahim Ozkol and Guven Komurgoz

Applied Energy, 2008, vol. 85, issue 12, 1225-1236

Abstract: In the present study, the effect of slip on entropy generation in magnetohydrodynamic (MHD) flow over a rotating disk is investigated by semi-numerical analytical solution technique. The nonlinear governing equations of flow and thermal fields are reduced to ordinary differential equations by the Von Karman approach, then solved via differential transform method (DTM), a recently-developed, powerful analytical method. Related entropy generation equations are derived and nondimensionalized using geometrical and physical flow field-dependent parameters. For a rotating surface the form of slip introduced into the governing equations is rarefaction. For comparison, slip and no-slip regimes in the range 0.1 > Kn > 0 and their interaction with magnetic effects are investigated by minimum entropy generation. While minimizing entropy generation, equipartitioning is encountered between fluid friction irreversibility and Joule dissipation.

Keywords: Entropy; generation; minimization; EGM; Slip; flow; MHD; flow; Rotating; disk; Genetic; algorithms; Equipartition; of; entropy; production; (EoEP); Second; law; of; thermodynamics (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00066-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:85:y:2008:i:12:p:1225-1236

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:85:y:2008:i:12:p:1225-1236