Improving the prediction of UK domestic energy-demand using annual consumption-data
Keith J. Baker and
R. Mark Rylatt
Applied Energy, 2008, vol. 85, issue 6, 475-482
Abstract:
The ability to predict how changes in patterns of usage in different types of dwelling can affect energy consumption is important if efforts to reduce demand and carbon emissions are to be effective. This paper describes an approach using a questionnaire survey, supported by annual gas and electricity meter data and floor-area estimates derived from a GIS. Clusters of higher and lower energy consumers were discovered and these were related to indicators of energy consumption. Simple and multiple regression were used to determine the strength of the relationships and identify the most statistically-significant indicators of differences in gas and electricity consumption. Although significant effects of the built-form type were not observable in the data available, the effects of related measurable and countable aspects of form, such as floor-area and numbers of rooms, were seen. Significant relationships were found with the number of bedrooms and regular home working, which may reflect changes in UK households that are expected to drive future energy-consumption. Implications for zonal domestic energy-models are noted.
Keywords: Domestic; energy; analysis; Statistical; modelling; Cluster; analysis (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (49)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(07)00147-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:85:y:2008:i:6:p:475-482
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().