Thermal performance and embodied energy analysis of a passive house - Case study of vault roof mud-house in India
Arvind Chel and
G.N. Tiwari
Applied Energy, 2009, vol. 86, issue 10, 1956-1969
Abstract:
This paper investigates thermal performance of an existing eco-friendly and low embodied energy vault roof passive house (or mud-house) located at Solar Energy Park of IIT Delhi, New Delhi (India). Based on embodied energy analysis, the energy payback time for the mud-house was determined as 18 years. The embodied energy per unit floor area of R.C.C. building (3702.3Â MJ/m2) is quiet high as compared to the mud-house (2298.8Â MJ/m2). The mud-house has three rooms with inverted U-shape roof and remaining three rooms with dome shape roof. A thermal model of the house consisting of six interconnected rooms was developed based on energy balance equations which were solved by using fourth order Runge Kutta numerical method. The predicted six room air temperatures were found in good agreement with the experimental observed data on hourly basis in each month for one year. The annual heating and cooling energy saving potential of the mud-house was determined as 1481 kWÂ h/year and 1813Â kWÂ h/year respectively for New Delhi composite climate. The total mitigation of CO2 emissions due to both heating and cooling energy saving potential was determined as 5.2 metric tons/year. The annual carbon credit potential of mud-house was determined as [euro] 52/year. Similar results were obtained for the different climatic locations in India.
Keywords: Vault; roof; Embodied; energy; Energy; saving; Mitigation; of; CO2; Carbon; credit (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00357-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:10:p:1956-1969
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().