Analytical optimization of interior PCM for energy storage in a lightweight passive solar room
Wei Xiao,
Xin Wang and
Yinping Zhang
Applied Energy, 2009, vol. 86, issue 10, 2013-2018
Abstract:
Lightweight envelopes are widely used in modern buildings but they lack sufficient thermal capacity for passive solar utilization. An attractive solution to increase the building thermal capacity is to incorporate phase change material (PCM) into the building envelope. In this paper, a simplified theoretical model is established to optimize an interior PCM for energy storage in a lightweight passive solar room. Analytical equations are presented to calculate the optimal phase change temperature and the total amount of latent heat capacity and to estimate the benefit of the interior PCM for energy storage. Further, as an example, the analytical optimization is applied to the interior PCM panels in a direct-gain room with realistic outdoor climatic conditions of Beijing. The analytical results agree well with the numerical results. The analytical results show that: (1) the optimal phase change temperature depends on the average indoor air temperature and the radiation absorbed by the PCM panels; (2) the interior PCM has little effect on average indoor air temperature; and (3) the amplitude of the indoor air temperature fluctuation depends on the product of surface heat transfer coefficient hin and area A of the PCM panels in a lightweight passive solar room.
Keywords: Energy; storage; Analytical; Optimization; PCM; Lightweight; envelope; Passive; solar; room (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00330-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:10:p:2013-2018
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().