Experimental investigation of the transient thermal performance of a bent heat pipe with grooved surface
Junye Wang
Applied Energy, 2009, vol. 86, issue 10, 2030-2037
Abstract:
A bent copper-water heat pipe with grooved inner surface has been investigated experimentally. A comparison between the bent and the straight heat pipes was performed at different inclination angle. Experimental results show that there is a small temperature difference between the condenser of the straight and that of the bent at the vertical orientation. The temperature difference increases as an inclination angle increases. Furthermore, the response time increases as the inclination angle increases. The thermal response of the straight to a sudden heat load is slightly faster than that of the bent. However, as the inclination angle increases to after the horizontal, the heat flux at the condensers decreases nonlinearly and the response time increases nonlinearly. A two-phase flow map has been proposed to explain the nonlinear performance of the thermal response and the heat flux, based on force balance among gravity, capillary, friction and buoyancy force acting on the working fluids. The nonlinear performance of the thermal response and the heat flux results from the capillary blocking due to formation of liquid bridge of two-phase flow. It was also found that the bent heat pipe is more sensitive to the change of the inclination angle than the straight in terms of the thermal response time and the heat flux of the condenser. The heat flux of the bent decreases faster than that of the straight after the horizontal orientation.
Keywords: Heat; transfer; Heat; pipes; Two-phase; Thermosyphon; Grooved; pipe; Temperature; measurement (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00005-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:10:p:2030-2037
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().