EconPapers    
Economics at your fingertips  
 

Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems

M. Medrano, M.O. Yilmaz, M. Nogués, I. Martorell, Joan Roca and Luisa F. Cabeza

Applied Energy, 2009, vol. 86, issue 10, 2047-2055

Abstract: Phase change materials (PCM) possess a great capacity of accumulation of energy in their temperature of fusion thanks to the latent heat. These materials are used in applications where it is necessary to store energy due to the temporary phase shift between the offer and demand of thermal energy. Thus, possible applications are the solar systems as well as the recovery of residual heat for its posterior use in other processes. In spite of this great potential, the practical feasibility of latent heat storage with PCM is still limited, mainly due to a rather low thermal conductivity. This low conductivity implies small heat transfer coefficients and, consequently, thermal cycles are slow and not suitable for most of the potential applications. This work investigates experimentally the heat transfer process during melting (charge) and solidification (discharge) of five small heat exchangers working as latent heat thermal storage systems. Commercial paraffin RT35 is used as PCM filling one side of the heat exchanger and water circulates through the other side as heat transfer fluid. Average thermal power values are evaluated for various operating conditions and compared among the heat exchangers studied. When the comparison is done for average power per unit area and per average temperature gradient, results show that the double pipe heat exchanger with the PCM embedded in a graphite matrix (DPHX-PCM matrix) is the one with higher values, in the range of 700-800Â W/m2-K, which are one order of magnitude higher than the ones presented by the second best. On the other hand, the compact heat exchanger (CompHX-PCM) is by large the one with the highest average thermal power (above 1Â kW), as it has the highest ratio of heat transfer area to external volume.

Keywords: PCM; Heat; exchangers; Heat; transfer; enhancement; Latent; heat; storage (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (79)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00021-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:10:p:2047-2055

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:86:y:2009:i:10:p:2047-2055