EconPapers    
Economics at your fingertips  
 

Applying a non-intrusive energy-management system to economic dispatch for a cogeneration system and power utility

Hsueh-Hsien Chang and Hong-Tzer Yang

Applied Energy, 2009, vol. 86, issue 11, 2335-2343

Abstract: Non-intrusive energy-management (NIEM) techniques are based on energy signatures. While such approaches lack transient energy signatures, the reliability and accuracy of recognition results cannot be determined. By using neural networks (NNs) in combination with turn-on transient energy analysis, this study attempts to identify load demands and improve recognition accuracy of NIEM results. Case studies are presented that apply various methods to compare training algorithms and classifiers in terms of artificial neural networks (ANN) due to various factors that determine whether a network is being used for pattern recognition. Additionally, in combination with electromagnetic transient program (EMTP) simulations, calculating the turn-on transient energy facilitate load can lead to identification and a significant improvement in the accuracy of NIEM results. Analysis results indicate that an NIEM system can effectively manage energy demands within economic dispatch for a cogeneration system and power utility. Additionally, a new method based on genetic algorithms (GAs) is used to develop a novel operational strategy of economic dispatch for a cogeneration system in a regulated market and approach the global optimum with typical environmental constraints for a cogeneration plant. Economic dispatch results indicate that the NIEM system based on energy demands can estimate accurately the energy contribution from the cogeneration system and power utility, and further reduce air pollution. Moreover, applying the NIEM system for economic dispatch can markedly reduce computational time and power costs.

Keywords: Neural; networks; Load; identification; Economic; dispatch; Non-intrusive; energy-management; system; Cogeneration; system (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00083-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:11:p:2335-2343

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:86:y:2009:i:11:p:2335-2343