Thermodynamic analysis of the reverse Joule-Brayton cycle heat pump for domestic heating
A.J. White
Applied Energy, 2009, vol. 86, issue 11, 2443-2450
Abstract:
The paper presents an analysis of the effects of irreversibility on the performance of a reverse Joule-Brayton cycle heat pump for domestic heating applications. Both the simple and recuperated (regenerative) cycle are considered at a variety of operating conditions corresponding to traditional (radiator) heating systems and low-temperature underfloor heating. For conditions representative of typical central heating in the UK, the simple cycle has a low work ratio and so very high compression and expansion efficiencies and low pressure losses are required to obtain a worthwhile COP. An approximate analysis suggests that these low loss levels would not necessarily be impossible to achieve, but further investigation is required, particularly regarding irreversible heat transfer to and from cylinder walls. In principle, recuperation improves the cycle work ratio, thereby making it less susceptible to losses, but in practice this advantage is compromised when realistic values of recuperator effectiveness are considered.
Keywords: Heat; pump; Reverse; Joule-Brayton; Domestic; heating (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/B6V1T ... 43bb8c9f17d374e46a67
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:11:p:2443-2450
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().