Analysis of biogas compression system dynamics
Mirko Morini,
Michele Pinelli and
Mauro Venturini
Applied Energy, 2009, vol. 86, issue 11, 2466-2475
Abstract:
The use of biogas for energy production has progressively increased in recent years, due to an increasing interest both in agricultural and energy policies of many industrialized countries. Biogas compression by means of natural gas infrastructure seems the most immediate solution, but could also lead to problems due to the different physical properties of the two gases. In this paper, a non-linear one-dimensional modular dynamic model is developed and used for the simulation of compression system transient behavior. The arrangement consists of a main line, where the compressor operates, and an anti-surge control, which consists of a recycle loop activated by a fast acting valve. Different maneuvers (start-up, normal operation, emergency shutdown and operating point variation) are simulated by using two different working fluids (methane and biogas). Simulations prove that the design of the surge protection system should consider the fluid to be elaborated. Moreover, system predisposition to surge increases as the ratio between system volumes and the inertia of the rotating masses increases.
Keywords: Compression; Dynamics; Surge; Natural; gas; Biogas; Hydrogen (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00082-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:11:p:2466-2475
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().