Performance of heat pumps charged with R170/R290 mixture
Ki-Jung Park and
Dongsoo Jung
Applied Energy, 2009, vol. 86, issue 12, 2598-2603
Abstract:
In this study, thermodynamic performance of R170/R290 mixture is measured on a heat pump bench tester in an attempt to substitute R22. The bench tester is equipped with a commercial hermetic rotary compressor providing a nominal capacity of 3.5 kW. All tests are conducted under the summer cooling and winter heating conditions of 7/45 °C and -7/41 °C in the evaporator and condenser, respectively. During the tests, the composition in R170/R290 mixture is varied from 0% to 10% with an interval of 2%. Test results show that the coefficient of performance (COP) and capacity of R290 are up to 15.4% higher and 7.5% lower, respectively than those of R22 for two conditions. For R170/R290 mixture, the COP decreases and the capacity increases with an increase in the composition of R170. The mixture of R170/R290 mixture at 4%/96% composition shows the similar capacity and COP as those of R22. For the mixture, the compressor discharge temperature is 17-28 °C lower than that of R22. For R170/R290 mixture, there is no problem with mineral oil since the mixture is composed of hydrocarbons. The amount of charge is reduced up to 58% as compared to R22. Overall, R170/R290 mixture is a good long term [`]drop-in' candidate from the view point of energy efficiency and greenhouse warming to replace R22 in residential air-conditioners and heat pumps.
Keywords: Alternative; refrigerant; COP; Capacity; R290; (propane); R170; (ethane); Refrigerant; mixture; Heat; pump (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00140-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:12:p:2598-2603
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().