Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux
Ruolang Zeng,
Xin Wang,
Binjiao Chen,
Yinping Zhang,
Jianlei Niu,
Xichun Wang and
Hongfa Di
Applied Energy, 2009, vol. 86, issue 12, 2670 pages
Abstract:
Due to its large apparent specific heat during the phase change period, microencapsulated phase change material slurry (MPCMS) has been suggested as a medium for heat transfer. In this paper, the convective heat transfer characteristics of MPCMS flowing in a circular tube were experimentally and numerically investigated. The enhanced convective heat transfer mechanism of MPCMS, especially in the thermal fully developed range, was analyzed by using the enthalpy model. Three kinds of fluid-pure water, micro-particle slurry and MPCMS were numerically investigated. The results show that in the phase change heat transfer region the Ste number and the Mr number are the most important parameters influencing the Nusselt number fluctuation profile and the dimensionless wall temperature. Reb, dp and c also influence the Nusselt number profile and the dimensionless wall temperature, but they are independent of phase change process.
Keywords: Microencapsulated; phase; change; material; Slurry; Laminar; flow; Phase; change; Heat; transfer (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00152-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:12:p:2661-2670
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().