Application of design space methodology for optimum sizing of wind-battery systems
Anindita Roy,
Shireesh B. Kedare and
Santanu Bandyopadhyay
Applied Energy, 2009, vol. 86, issue 12, 2690-2703
Abstract:
A methodology for optimum sizing of different components (i.e., rotor diameter, electrical generator rating, and battery capacity) of a standalone wind-battery system is proposed in this paper. On the basis of time series simulation of the system performance along with different design constraints, the entire set of feasible design options, also known as the design space, has been identified on a rotor diameter vs. rated power diagram. The design space of a standalone wind-battery system identifies the entire envelope within which a feasible system may be designed. The optimum configuration of the standalone system is identified on the basis of minimum cost of energy (US$/kWh). It is observed that the cost of energy is sensitive to the magnitude of average demand and the wind regime. Sensitivity of the capital cost on the minimum cost of energy is also studied.
Keywords: System; sizing; Wind-battery; systems; Isolated; power; system; design; Design; space (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00166-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:12:p:2690-2703
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().