EconPapers    
Economics at your fingertips  
 

Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation

Guobing Zhou, Yongping Yang, Xin Wang and Shaoxiang Zhou

Applied Energy, 2009, vol. 86, issue 1, 52-59

Abstract: Effect of shape-stabilized phase change material (SSPCM) plates combined with night ventilation in summer is investigated numerically. A building in Beijing without active air-conditioning is considered for analysis, which includes SSPCM plates as inner linings of walls and the ceiling. Unsteady simulation is performed using a verified enthalpy model, with time period covering the summer season. Effects of the following factors on room air temperature are investigated: the thermophysical properties of the SSPCM, the thickness of SSPCM plate and air change per hour (ACH) at both nighttime and daytime. The results show that the SSPCM plates could decrease the daily maximum temperature by up to 2 °C due to the cool storage at night. The appropriate values for melting temperature, heat of fusion, thermal conductivity and thickness of SSPCM plates need to be considered and calculated according to the climate conditions and building structure. The ACH at night needs to be as high as possible but the ACH at daytime should be controlled.

Keywords: Latent; heat; thermal; energy; storage; Shape-stabilized; phase; change; material; Night; ventilation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00094-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:1:p:52-59

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:86:y:2009:i:1:p:52-59