Use of a probabilistic model to design energy transmission and distribution networks for low enthalpy geothermal multiple use schemes
John J. Gelegenis
Applied Energy, 2009, vol. 86, issue 3, 284-289
Abstract:
A probabilistic model is suggested for the design of transmission and distribution network of geothermal energy to potential consumption sites, in cases where the development of various competitive or complementary non-electrical uses is probable, within the broader area of a field. The model can be used to find out (a) the optimum network that may offer the best economic results to the agent who will undertake the development of the field, and (b) the corresponding selling price at which the thermal fluids will be supplied to the end users who are assumed to be other than the above agent. Model input data can be collected in the frame of an appropriate market study, which is roughly specified in this work and commented according to relevant experience from a Greek geothermal field. Finally, applicability of the model is demonstrated through an indicative example.
Keywords: Geothermal; energy; Multiple; use; Probabilistic; model; Probability; Location-allocation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00106-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:3:p:284-289
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().