Voltage dip generator for wind energy systems up to 5Â MW
Miguel García-Gracia,
M. Paz Comech,
Jesús Sallán,
Diego López-Andía and
Oscar Alonso
Applied Energy, 2009, vol. 86, issue 4, 565-574
Abstract:
The increase in installed wind power has brought a number of Grid Code areas into focus. The area of fault ride-through capability is one with serious implications for system security and thus has an impact on the allowed wind energy penetration in the network. There are several wind turbine models that can be used to study the effects of voltage dips and the corresponding wind turbine responses but these models need to be validated by comparing their results with the data obtained during field tests. This paper presents the design of a voltage dip generator that can be used to test wind turbines up to 5Â MW and 20Â kV. This system is able to adjust voltage dip depth and duration to the standards defined in different countries and also the fault impedance seen by the grid in order not to disturb its operation during the tests. Simulation results are validated using experimental data obtained at a laboratory-scale prototype (400Â V, 90Â kW). Finally, the actual 5Â MW system and the results obtained during field tests are presented.
Keywords: Wind; energy; Grid; codes; Fault; ride-through; capability; Model; validation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00175-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:4:p:565-574
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().