Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network
G. Najafi,
B. Ghobadian,
T. Tavakoli,
D.R. Buttsworth,
T.F. Yusaf and
M. Faizollahnejad
Applied Energy, 2009, vol. 86, issue 5, 630-639
Abstract:
The purpose of this study is to experimentally analyse the performance and the pollutant emissions of a four-stroke SI engine operating on ethanol-gasoline blends of 0%, 5%, 10%, 15% and 20% with the aid of artificial neural network (ANN). The properties of bioethanol were measured based on American Society for Testing and Materials (ASTM) standards. The experimental results revealed that using ethanol-gasoline blended fuels increased the power and torque output of the engine marginally. For ethanol blends it was found that the brake specific fuel consumption (bsfc) was decreased while the brake thermal efficiency ([eta]b.th.) and the volumetric efficiency ([eta]v) were increased. The concentration of CO and HC emissions in the exhaust pipe were measured and found to be decreased when ethanol blends were introduced. This was due to the high oxygen percentage in the ethanol. In contrast, the concentration of CO2 and NOx was found to be increased when ethanol is introduced. An ANN model was developed to predict a correlation between brake power, torque, brake specific fuel consumption, brake thermal efficiency, volumetric efficiency and emission components using different gasoline-ethanol blends and speeds as inputs data. About 70% of the total experimental data were used for training purposes, while the 30% were used for testing. A standard Back-Propagation algorithm for the engine was used in this model. A multi layer perception network (MLP) was used for nonlinear mapping between the input and the output parameters. It was observed that the ANN model can predict engine performance and exhaust emissions with correlation coefficient (R) in the range of 0.97-1. Mean relative errors (MRE) values were in the range of 0.46-5.57%, while root mean square errors (RMSE) were found to be very low. This study demonstrates that ANN approach can be used to accurately predict the SI engine performance and emissions.
Keywords: Artificial; neural; network; SI; engine; Engine; performance; Exhaust; emissions; Ethanol-gasoline; blends (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (70)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00240-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:5:p:630-639
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().