Energy and cost analysis of semi-transparent photovoltaic in office buildings
Danny H.W. Li,
Tony N.T. Lam,
Wilco W.H. Chan and
Ada H.L. Mak
Applied Energy, 2009, vol. 86, issue 5, 722-729
Abstract:
Solar energy conversion systems and daylighting schemes are important building energy strategies to produce clean energy, reduce the peak electrical and cooling demands and save the building electricity expenditures. A semi-transparent photovoltaic (PV) is a building component generating electricity via PV modules and allowing daylight entering into the interior spaces to facilitate daylighting designs. This paper studies the thermal and visual properties, energy performance and financial issue of such solar facades. Data measurements including solar irradiance, daylight illuminance and output power for a semi-transparent PV panel were undertaken. Using the recorded results, essential parameters pertaining to the power generation, thermal and optical characteristics of the PV system were determined. Case studies based on a generic reference office building were conducted to elaborate the energy and cooling requirements, and the cost implications when the PV facades together with the daylight-linked lighting controls were being used. The findings showed that such an integrated system could produce electricity and cut down electric lighting and cooling energy requirements to benefit the environmental, energy and economic aspects.
Keywords: Semi-transparent; photovoltaic; Energy; consumption; Life; cycle; cost; analysis; Solar; irradiance; Daylight; illuminance (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (49)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00203-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:5:p:722-729
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().