EconPapers    
Economics at your fingertips  
 

Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage

Weilong Wang, Xiaoxi Yang, Yutang Fang, Jing Ding and Jinyue Yan

Applied Energy, 2009, vol. 86, issue 9, 1479-1483

Abstract: Expanded graphite is a promising heat transfer promoter due to its high conductivity, which improves the thermal conductivity of organic phase change materials. Moreover, it can also serve as supporting materials to keep the shape of the blends stable during the phase transition. After various investigation, the results showed that the maximum weight percentage of polyethylene glycol was as high as 90% in this paper without any leakage during the melting period, with the latent heat of 161.2 J g-1 and the melting point of 61.46 °C. It was found that the value of the latent heat was related to the polyethylene glycol portion, increased with the increase in polyethylene glycol content. Moreover, the measured enthalpy of the composite phase change materials was proportional to the mass ratio of the polyethylene glycol component. The melting temperatures were almost the same with different ratios of composites. The conductivity of blends was improved significantly with the high value of 1.324 W m-1 K-1 compared to the pure polyethylene glycol conductivity of 0.2985 W m-1 K-1.

Keywords: Polyethylene; glycol; Expanded; graphite; Form-stable; materials; Thermal; conductivity (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (49)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00320-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:9:p:1479-1483

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1479-1483